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Abstract

In this Online Appendix we

I. describe methods to standardize the correspondent relationships data and balance-

sheet data for state and national banks;

II. show evidence that the observed concentration of interbank deposits was not a mere

reflection of an increase in the number of country banks;

III. show that the model has a unique best-case equilibrium solution and describe the

algorithm that converges to this equilibrium solution;

IV. analytically compare an N-bank chain network versus a two-tier pyramid, which un-

derlines how the concentration of interconnections affects stability.
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Online Appendix I.A: Correspondent Data Standardization

As state and national banks reported correspondent relationships data differently, we de-
scribe differences between the two and the standardization procedure to match them.

State banks’ annual reports provided quarterly balance sheets and the amounts due to each
state-chartered Pennsylvania bank by individual debtors annually. Balance-sheet information
is available for March, June, September, and November, while correspondents’ information is
available for November of each year. We collect information on balance sheets and amounts
due to each Pennsylvania state bank by individual debtor for November.

National banks did not report all of their correspondent banks because the primary purpose
of examinations was to verify whether national banks met legal reserve requirements. Country
banks selected the national banks in reserve cities with which they wished to keep a portion of
their legal reserves, and sent the names of those banks to the comptroller. Once approved, they
were known as approved reserve agents. Similarly, national banks in reserve cities selected
national banks in central reserve cities. Hence, for both country banks and reserve city banks,
only amounts due from approved reserve agents in reserve cities and the central reserve city
were enumerated. Amounts due from other banks in reserve cities and the central reserve city
were not reported. In addition, amounts due from other country banks did not need to be
reported. For national banks in the central reserve city, no due-from information was reported
since these banks had to hold all their reserves in cash.

Examiners’ reports include three types of “due-from” payments from the banks with whom
they had relationships: (1) amounts due from approved redeeming agents, (2) amounts due from
other national banks, and (3) amounts due from other banks. For approved redeeming agents,
each agent’s name is recorded with the corresponding amount. For other national banks and
other banks, only aggregate due-from amounts were reported. During this period, most national
banks had one reserve agent to keep their legal reserves. These reserve agents tended to be the
major holder of national banks’ correspondent deposits. On average, national banks kept 50
percent of total interbank deposits in one bank.1 However, a few Philadelphia banks kept their
reserves in multiple banks in New York City, with about 20 percent of total interbank deposits
in each bank. To make the data on state banks’ correspondents comparable to that of national
banks with their approved reserve agents, we list only correspondent banks that held more than
20 percent of total interbank deposits for each bank.

1Calomiris and Carlson (2017) study the interbank network from the panic of 1893; they find similar values of
56 percent.
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Online Appendix I.B: Balance-Sheet Standardization

Because state and national bank balance sheets report different items, we combine them to
create a standardized list of six asset categories (cash; government securities; other securities;
amounts due from other banks; loans; and other assets) and six liability categories (capital;
notes; deposits; amounts due to other banks; surplus; and other liabilities). Table A.1 and A.2
report the balance-sheet categories for state banks and national banks, respectively.

Table A.1. State Bank Balance-Sheet Structure

Assets Standardized

Gold and silver in the vault of the bank Cash
Current notes, checks, and bills of other banks Cash
Uncurrent notes, checks, and bills of other banks Cash
Other obligations of other banks Due from
Bills and notes discounted, (not under protest) Loans
Bills and notes discounted, (under protest) Loans
Mortgages held and owned by the bank Loans
Assessed value for the year 186- of the real estate bound by said mortgages Loans
Judgments held and owned by the bank Loans
Real estate held and owned by the bank Loans
Due from solvent banks Due from
Due from insolvent banks Due from
Public and corporate stocks and loans Other securities
Bonds held by the bank Other securities
Treasury notes Government securities
Claims against individuals or corporations, disputed or in controversy Loans
All other debts and claims either due or to become due Loans
Expenses Other assets
Value of any other property of the bank, as the same stands charged on Other assets

the books, or otherwise

Liabilities Standardized

Capital stock actually paid in Capital
Notes in circulation Notes
Deposits Deposits
Certificates of deposit Deposits
Due to the Commonwealth Other liabilities
Due to corporations Deposits
Due to banks Due to
Due to individuals Deposits
Claims against the bank, in controversy Other liabilities
Surplus, contingent or sinking fund Surplus
All other items of indebtedness not embraced in foregoing specifications Other liabilities

Notes: This table lists the original and standardized balance-sheet items for state banks.
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Table A.2. National Bank Balance-Sheet Structure

Assets Standardized

Loans and discounts Loans
Overdrafts Loans
U.S. bonds deposited to secure circulation Government securities
U.S. bonds deposited to secure deposits Government securities
U.S. bonds and securities on hand Government securities
Other stocks, bonds, and mortgages Other securities
Due from approved redeeming agents Due from
Due from other national banks Due from
Due from other banks and bankers Due from
Real estate, furniture, etc. Other assets
Current expenses Other assets
Premiums Other assets
Checks and other cash items Cash
Bills of national banks Cash
Bills of other banks Cash
Specie Cash
Fractional currency Cash
Legal tender notes Cash
Compound interest notes Cash

Liabilities Standardized

Capital stock Capital
Surplus fund Surplus
Undivided profits Surplus
National bank notes outstanding Notes
State bank notes outstanding Notes
Individual deposits Deposits
United States deposits Deposits
Deposits of U.S. disbursing officers Deposits
Due to national banks Due to
Due to other banks and bankers Due to
Amount due, not included under either of the above headings Other liabilities

Notes: This table lists the original and standardized balance-sheet items for national banks. Due from
approved redeeming agents, checks and other cash items, specie, fractional money, legal tender notes,
and compound interest notes counted toward legal reserves (Bankers’ Magazine, 1875).
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Online Appendix II: Bank Entry and the Concentration of Interbank De-
posits

After the NBAs were passed, many new national banks entered the market, especially out-
side financial centers. The number of banks in Pennsylvania and New York City increased from
113 in 1862 to 198 in 1867. This was largely driven by a doubling of country banks from 64 to
132. The coincidence of the rule change and the increase in new bank entries raise the concern
that the concentration of interbank deposits may have originated from the increased volume of
the banking sector rather than regulation. In this Appendix, we show that regulation led to the
concentration of interbank deposits. To do so, we examine the distribution of interbank deposits
across converted national, new national, and state banks.

We begin by comparing the interbank deposits of converted national banks in 1867 to them-
selves as state banks in 1862. Since these banks did not have to comply with reserve require-
ments before the NBAs, this exercise allows us to document the direct effect of regulation.
Seventy-five state banks converted into national banks after the NBAs. Table A.3 compares the
distribution of interbank deposits of these banks before and after the conversion.

We find that the distribution of interbank deposits varied significantly after the rule change.
For country banks, the percentage of interbank deposits in Philadelphia and Pittsburgh went
up from 68% to 77%, and the percentage of correspondent relationships went up from 60%
to 76%. In particular, Pittsburgh became a major financial center after it was designated as a
reserve city. The fraction of correspondent relationships between country banks and Pittsburgh
climbed from 2% to 10%. For Philadelphia and Pittsburgh banks, the percentage of deposits
and correspondent linkages with New York City banks increased from 72% to 96% and 46% to
94%, respectively. These findings suggest that the law caused the concentration of deposits.

Next, we compare the distribution of interbank deposits of new national banks to those of
state banks in 1867. By doing so, we alleviate the concern that new bank entries alone could
have caused the concentration of deposits. Without the NBAs, these new banks would have
behaved similarly to the state banks, which were not under the reserve requirements in 1867.
In Table A.4, we compare the interbank deposits of 91 new national banks to 12 state banks in
1867.2 The distribution of interbank deposits differed for these two groups. The deposits of an
average state bank were more dispersed. For example, the Pittsburgh state banks allocated 42%
of deposits outside of New York City, and the country state banks allocated 21% of deposits to
non-reserve city banks. In comparison, these numbers for the new national banks were only 8%
and 2%, respectively. These findings further corroborate that the rule change was critical.

2The 91 new national banks included 87 new banks that entered under the national charters and four banks
that entered initially as state banks between 1863 and 1866 and converted to national banks by 1867. The 12 state
banks included nine original state banks and three new state banks.
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Table A.3. Distribution of Interbank Deposits: Converted National Banks in 1862 vs. 1867

Converted National Banks

All Banks Philadelphia Banks Pittsburgh Banks Country Banks

Year = 1862 Amount Links Amount Links Amount Links Amount Links

New York City 41.5 36.1 75.6 38.1 68.6 53.8 30.3 32.6
Philadelphia 54.8 41.7 13.5 11.9 25.0 30.8 67.8 57.3
Pittsburgh 0.4 1.4 0.0 0.0 0.0 0.0 0.5 2.2
Other PA 2.4 11.8 5.9 23.8 4.7 7.7 1.3 6.7
Other U.S. 0.9 9.0 5.0 26.2 1.7 7.7 0.0 1.1

Year = 1867 Amount Links Amount Links Amount Links Amount Links

New York City 58.6 47.1 100.0 100.0 91.2 88.9 20.8 22.4
Philadelphia 36.5 44.8 0.0 0.0 8.8 11.1 69.3 65.5
Pittsburgh 3.7 6.9 0.0 0.0 0.0 0.0 7.5 10.3
Other PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other U.S. 1.2 1.1 0.0 0.0 0.0 0.0 2.4 1.7

Notes: This table compares the distribution of interbank deposits of the 75 state banks that converted to national
banks in Pennsylvania for the years 1862 and 1867. All numbers are in percentages. The rows indicate the loca-
tion of correspondent banks. The columns indicate the location of respondent banks. We classify respondent banks
into three groups: Philadelphia, Pittsburgh, and country banks. The columns show the fraction of deposits held at
different locations against total major due-from deposits in all the 75 converted Pennsylvania national banks, those
in Philadelphia, in Pittsburgh, and converted country banks.

To conclude, reserve requirements led to the concentration of interbank deposits in financial
centers. While significant bank entry occurred at the same time as the NBAs, our analysis
shows that the same level and structure of concentration would not have appeared without the
rule change by the NBAs.
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Table A.4. Distribution of Interbank Deposits: New National Banks vs. State Banks in
1867

New National Banks

All Banks Philadelphia Banks Pittsburgh Banks Country Banks

Year = 1862 Amount Links Amount Links Amount Links Amount Links

New York City 68.4 50.5 100.0 100.0 92.4 83.3 42.3 40.5
Philadelphia 26.4 38.1 0.0 0.0 7.6 16.7 47.7 45.2
Pittsburgh 4.3 8.6 0.0 0.0 0.0 0.0 8.3 10.7
Other PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other U.S. 0.9 2.9 0.0 0.0 0.0 0.0 1.7 3.6

State Banks

Year = 1867 Amount Links Amount Links Amount Links Amount Links

New York City 29.2 21.1 - - 58.5 50.0 14.5 17.6
Philadelphia 42.9 42.1 - - 0.0 0.0 64.4 47.1
Pittsburgh 13.8 5.3 - - 41.5 50.0 0.0 0.0
Other PA 13.6 21.1 - - 0.0 0.0 20.4 23.5
Other U.S. 0.5 10.5 - - 0.0 0.0 0.8 11.8

Notes: This table compares the distribution of interbank deposits of 91 new national banks vs. 12 state banks in
1867. All numbers are in percentages. The rows indicate the location of correspondent banks. The columns indi-
cate the location of respondent banks. We classify respondent banks into three groups: Philadelphia, Pittsburgh,
and country banks. The columns show the fraction of deposits held at different locations against total major due-
from deposits in all the Pennsylvania respondent banks, those in Philadelphia, in Pittsburgh, and country banks.

Online Appendix III: Best-Case Equilibrium

In this Appendix, we show that the model has a unique best-case equilibrium solution. This
equilibrium outcome reflects the minimum set of possible withdrawals and defaults. We also
show that an iterative algorithm converges to the best-case equilibrium solution.

As explained in the body of the paper, the two-period payment equilibrium is computed
in two steps. We solve first for the t = 1 equilibrium upon the realization of vector R1, and
then for the t = 2 equilibrium upon the realization of vector R2. The algorithm to compute the
t = 1 equilibrium has an outer loop and an inner loop. The outer loop computes the strategic
withdrawals W1, and the inner loop computes the clearing system X1. As in Elliott et al. (2014)
and Stanton et al. (2017), we focus on the best-case equilibrium, i.e., the outcome with the
minimal set of possible withdrawals and defaults.

0. Initialization. Set iteration m = 0. Set
(0)

W1 such that
(0)

W1
ii = 1,∀i ∈ ΩW ,

(0)

W1
ii = 0,∀i < ΩW

and
(0)

W1
i j = 0, ∀ j , i. Set

(0)

X1 = W1D.

1. Finding equilibrium for t = 1 (outer loop for W1)
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(a) Set m = m + 1.

(b) Given
(m−1)

W1 , solve for the unique payment matrix
(m)

X1 using the Eisenberg-Noe ficti-

tious default algorithm and
(m−1)

X1 as the initial guess (inner loop for X1).

(c) Compute
(m)

W1 according to the withdrawal conditions (7)–(12) and
(m)

X1.

(d) Terminate if
(m)

W1 =
(m−1)

W1 ; otherwise, go back to Step 1.(a).

2. Finding equilibrium for t = 2

(a) Given
(m)

W1 and
(m)

X1, obtain W2 = 1−
(m)

W1 and A2 according to equation (4) in the paper.

(b) Solve for the unique payment matrix X2 using the Eisenberg-Noe fictitious default
algorithm.

To show that this algorithm converges to the best-case equilibrium solution, we begin by
decomposing the payment variable Xt

ki in equation (6) to the product of two subcomponents, Πt
ki

and Pt
i. The first component, Πt

ki =
W t

kiDki∑
j W t

jiD ji
, is the nominal liability of bank i to depositor k as a

proportion of bank i’s total liabilities at time t; the second component, Pt
i = min

{∑
j W t

jiD ji, At
i

}
,

is the total payment by bank i to depositors at time t. The total payments thus satisfy:

P1
i = Φ1(P1) = min

∑
j

W1
jiD ji,Ci + 1

l
iξIi +

∑
j,i

Π1
i jP

1
j

 , (A.1)

P2
i = Φ2(P2) = min

∑
j

W2
jiD ji,

A1
i −

∑
j

W1
jiD ji


+

+ (1 − 1l
i)IiR2

i +
∑
j,i

Π2
i jP

2
j

 . (A.2)

The equilibrium payment vectors, Pt = Φt(Pt), are the fixed points of the two mappings defined
by equations (A.1) and (A.2).

We start by analyzing the t = 1 equilibrium. From mapping Φ1 in equation (A.1), our
model differs from the Eisenberg-Noe (2001) setting because of the endogenous withdrawals∑

j W1
jiD ji. To understand the equilibrium properties, let us first consider the formulation in

which the liquidity withdrawals W1 are exogenously given. This corresponds to the inner loop
of the algorithm that solves the payment matrix X1. The following conclusions hold.

Proposition 1 For a given liquidity withdrawal matrix W1, the payment equilibrium character-
ized by X1 exists and is unique. Furthermore, X1 can be obtained via an iterative algorithm in
at most N iterations.

7



Proof. The proof follows from Eisenberg and Noe (2001). Since X1 = Π1P1, it is equivalent
to analyze the properties of the payment vector P1. If the liquidity withdrawals W1 are exoge-
nously set, the t = 1 clearing system matches that in Eisenberg and Noe (2001). In particular,
the cost of liquidating investments does not create value discontinuity as in e.g., Rogers and
Veraart (2013) and Elliott et al. (2014). To see this, we rewrite the mapping Φ1 as

P1
i = Φ1(P1) =


∑

j W1
jiD ji if

∑
j W1

jiD ji ≤ Ci +
∑

j,i Π1
i jP

1
j∑

j W1
jiD ji if Ci +

∑
j,i Π1

i jP
1
j <

∑
j W1

jiD ji ≤ Ci + ξIi +
∑

j,i Π1
i jP

1
j

Ci + ξIi +
∑

j,i Π1
i jP

1
j if Ci + ξIi +

∑
j,i Π1

i jP
1
j <

∑
j W1

jiD ji

.

(A.3)
From the first to the second case, the bank liquidates investment Ii. Even though the liquidation
of investment is costly intertemporally, it does not create value discontinuity for t = 1; instead,
the amount of total available assets increases by ξIi, which allows the bank to fulfill the with-
drawal requests. From the second to the third case, the bank defaults, and the mapping function
is continuous at the cutoff value.

Denote 1 as the N-dimensional vector with all components equal to 1. The vector of total
withdrawal requests is 1T (W1 ◦ D) < 1T D, in which ◦ represents the Hadamard product of
two matrices. It follows that P1 ∈ [0,1T D] ⊂ Rn. The set [0,1T D] is bounded and, with the
pointwise ordering induced by the lattice operations, forms a complete lattice. The equilibrium
payment vector is a fixed point of the mapping Φ1 : [0,1T D] → [0,1T D] defined by equation
(A.1).

As shown in Theorem 1 of Eisenberg and Noe (2001), the mapping Φ1 is continuous,
positive, increasing, concave, and nonexpansive. Tarski’s fixed-point theorem (1955) implies
that the set of fixed points is nonempty and forms a complete lattice. Furthermore, since
Ci + 1

l
iξIi > 0, ∀i, all banks have positive cash flow available on top of the interbank pay-

ments received. This is a sufficient condition that the clearing system is regular (see Eisenberg
and Noe, 2001, p. 242). Theorem 2 in their paper then establishes that the equilibrium clearing
vector P1 is unique.

This unique equilibrium payment vector P1 can be obtained via the fictitious default algo-

rithm in at most N iterations.3 The algorithm starts with the assumption that no banks default.
If all obligations being satisfied is indeed a feasible outcome, the algorithm terminates. If some
banks default when all other banks pay fully, we update the payment vector given the defaults
in the previous step and check for new defaults. The algorithm terminates when no new defaults
occur.

Having established the equilibrium properties under exogenous withdrawals, next, we in-

3This result is shown in Lemma 3 of Eisenberg and Noe (2001).
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corporate the withdrawal conditions (7)–(12) in the main paper and analyze how they affect the
equilibrium characterization. To begin with, note that the exogenous withdrawal shocks by re-
tail depositors ΩW do not affect the above results. We thus focus on the endogenous withdrawal
decisions micro-founded by depositors’ deposits redemption optimization.

Condition (10) states that bank i withdraws interbank deposits from correspondents when
bank i itself faces withdrawals that could not be met by cash. Depositors’ withdrawals from
bank i are characterized by conditions (7)–(8) and (11)–(12). From (7)–(8), the retail depositor
withdraws from bank i when other depositors of her bank do so or when her bank’s correspon-
dent defaults. From (11)–(12), all depositors of bank i withdraw if the (expected) resources
at bank i do not meet the total liabilities. Other than exogenous reasons that bank i has a low
expected return E

[
R2

i

]
, this happens when bank i’s correspondents face large withdrawals that

cannot be met. In other words, significant withdrawals at its correspondents lead to withdrawals
at bank i.

The contagious withdrawals give rise to an important feature: depositors face strategic com-
plementarities in their withdrawal decisions. Following Bulow et al. (1985), the marginal payoff

of any depositor’s withdrawal increases with other depositors’ withdrawals. Specifically, a retail
depositor’s marginal payoff to withdraw increases as other depositors withdraw under (7)–(8),
and flat otherwise. A respondent bank’s marginal payoff to withdraw increases as other deposi-
tors withdraw under (10)–(12), and flat otherwise.

Supermodular games provide the appropriate framework to model strategic interactions in
the presence of complementarities (Topkis, 1979; Milgrom and Roberts, 1990; Vives, 1990).
The following lemma establishes the supermodularity property.

Lemma 1 The game of depositors’ strategic withdrawals at t = 1 is supermodular.

Proof. The proof is based on Milgrom and Roberts (1990). This non-cooperative game has
2N players: N retail depositors and N bank depositors, denoted respectively by ri and bi, i ∈

{1, 2, ...,N}. A retail depositor ri has a one-dimensional strategy set: Wr
i = W1

ii ∈ {0, 1}. A bank
depositor bi has an (N − 1)-dimensional strategy set: Wb

i,· ∈ {0, 1}
N−1 where Wb

i, j = W1
i j ∈ {0, 1},

∀ j , i. The strategy set of each player is finite, compact, and forms a complete lattice in the
Euclidean space with the usual vector ordering.

Denote the payoff function of the retail depositor as f r
i (Wr

i ; Wr
−i ×Wb) and the bank depos-

itor as f b
i (Wb

i ; Wb
−i × Wr). Since the players’ strategy sets are finite, the payoff functions are

continuous with respect to the strategy sets.
Next we show that the payoff functions satisfy increasing differences and supermodularity.

For a retail depositor ri, the payoff function satisfies: f r
i (Wr

i = 1; Wr
−i ×Wb) − f r

i (Wr
i = 0; Wr

−i ×

Wb) is positive if 1̃d
i = 1 and is negative otherwise. Given the nature of conditions (7)–(8), an
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element in {Wr
−i ×Wb : 1̃d

i (Wr
−i ×Wb) = 1} cannot be smaller than any element in {Wr

−i ×Wb :
1̃

d
i (Wr

−i ×Wb) = 0}. Hence, ∀Ŵr
−i × Ŵb ≥ Wr

−i ×Wb ∈ {0, 1}N
2−1, we have

f r
i (1; Ŵr

−i × Ŵb) − f r
i (0; Ŵr

−i × Ŵb) ≥ f r
i (1; Wr

−i ×Wb) − f r
i (0; Wr

−i ×Wb).

This establishes that f r
i has increasing differences in Wr

i and Wr
−i ×Wb. Furthermore, since Wr

i

is one-dimensional, ∀Wr
i , Ŵ

r
i ∈ {0, 1} and ∀Wr

−i ×Wb ∈ {0, 1}N
2−1 we have

f r
i (Wr

i ,W
r
−i×Wb) + f r

i (Ŵr
i ,W

r
−i×Wb) ≤ f r

i (inf{Wr
i , Ŵ

r
i },W

r
−i×Wb) + f r

i (sup{Wr
i , Ŵ

r
i },W

r
−i×Wb).

This establishes that f r
i is supermodular in Wr

i .
For a bank depositor bi, the payoff function satisfies f b

i (Wb
i, j = 1,∀ j , i; Wb

−i × Wr) −
f b
i (Wb

i, j = 0,∃ j , i; Wb
−i × Wr) is positive if condition (10) holds, and is negative otherwise;

f b
i (Wb

i, j = 1; Wb
i,k, j; Wb

−i × Wr) − f b
i (Wb

i, j = 0; Wb
i,k, j; Wb

−i × Wr) is positive if condition (11) or
(12) holds for bank j, and is negative otherwise. Given the nature of conditions (10)–(12), an
element of Wb

−i×Wr under which any of these conditions hold cannot be smaller than an element
under which conditions (10)–(12) do not hold. Hence, ∀Ŵb

i ≥ Wb
i , ∀Ŵb

−i × Ŵr ≥ Wb
−i ×Wr, we

have

f b
i (Ŵb

i ; Ŵb
−i × Ŵr) − f b

i (Wb
i ; Ŵb

−i × Ŵr) ≥ f b
i (Ŵb

i ; Wb
−i ×Wr) − f b

i (Wb
i ; Wb

−i ×Wr).

That is, f b
i has increasing differences in Wb

i and Wb
−i × Wr. In a similar fashion, f b

i satisfies
increasing differences with respect to any pair of Wb

i, j and Wb
i,k for a given {Wb

i,− j,k ×Wb
−i ×Wr}.

Equivalently, f b
i is supermodular in Wb

i for any given Wb
−i ×Wr.

Taken together, all conditions in Milgrom and Roberts (1990) for a supermodular game
satisfy.

Supermodular games have nice properties. The following result characterizes the equilib-
rium.

Proposition 2 The set of pure strategy Nash equilibria of withdrawals W1 is non-empty and
forms a complete lattice. Let the best-case equilibrium be the one with the minimum with-
drawals. The best-case equilibrium can be obtained via an iterative algorithm with finite steps.

Proof. The proof applies results established in Tarski (1955), Topkis (1979), Milgrom and
Roberts (1990), and Vives (1990). The following theorem is central to our results.

Theorem 5 of Milgrom and Roberts (1990) Let Γ be a supermodular game. For each player
n, there exist largest and smallest serially undominated strategies, xn and xn. Moreover, the
strategy profiles (xn; n ∈ N) and (xn; n ∈ N) are pure Nash equilibrium profiles.
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This theorem says that all serially undominated strategies form a complete lattice, whose
extreme points are the largest and smallest Nash equilibria. Moreover, the theorem establishes
that the extreme points can be obtained using the iterated elimination process which produces a
series of monotone strategies.

From Lemma 1, the game of t = 1 depositors’ strategic withdrawals is supermodular. Ap-
plying Milgrom and Roberts (1990), the set of pure strategy Nash equilibria exists and forms
a complete lattice. The best-case equilibrium has the minimum withdrawals and thus is the
smallest Nash equilibrium in the complete lattice.

Equilibria of games with supermodular payoffs, yielding monotone increasing best responses,
have nice stability properties. In particular, the smallest Nash equilibrium can be found by an
iterative elimination of strictly dominated strategies starting from the smallest action profile.
This algorithm is based on the one proposed in Topkis (1979). The algorithm corresponds to
the iterative decision-making process by which each of the players concurrently and individ-
ually chooses the next payoff-optimizing strategy under the assumption that the other players
will hold their decisions unchanged. A new joint decision is put together by combining these
individually determined decisions, and the next iteration then begins. For finite games, the iter-
ation converges in finite steps (Topkis, 1979, pg. 784). This algorithm is formalized as the “best
response dynamics” in Milgrom and Roberts (1990) and the “Cournot tâtonnement” in Vives
(1990). Theorem 5.1 in Vives (1990) establishes monotone convergence to an equilibrium point
of the game whenever the starting point is ‘below’ or ‘above’ all the best reply correspondences
of the players.

Once the t = 1 equilibrium is determined and the returns R2 are realized, the t = 2 payment
equilibrium can be characterized following Eisenberg and Noe (2001).

Proposition 3 Once the t = 1 equilibrium {X1,W1} is determined, the final date payment equi-
librium characterized by X2 exists and is unique. Furthermore, X2 can be obtained via an
iterative algorithm in at most N iterations.

Proof. The t = 2 clearing system precisely matches that in Eisenberg and Noe (2001). This is
because (1) once the returns R2 are realized, the term

[
A1

i −
∑

j W1
jiD ji

]+
+(1−1l

i)IiR2
i > 0 is fixed

for each bank; (2) default does not create extra costs that would affect the clearing outcome.
The proof works similarly to Proposition 1. Since X2 = Π2P2, it is equivalent to analyze the
properties of the payment vector P2. It follows that P2 ∈ [0,1T D] ⊂ Rn. The set [0,1T D] is
bounded and forms a complete lattice. The equilibrium payment vector is a fixed point of the
mapping Φ2 : [0,1T D] → [0,1T D] defined by equation (A.2). As shown in Theorem 1 of
Eisenberg and Noe (2001), the mapping Φ2 is positive, increasing, concave, and nonexpansive.
Tarski’s fixed-point theorem (1955) implies that the set of fixed points is nonempty and forms
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a complete lattice. Furthermore, since [A1
i −

∑
j W1

jiD ji]+ + (1 − 1l
i)IiR2

i > 0, ∀i, each bank has
positive cash flow available on top of the interbank payments received. Hence, the clearing
system is regular. Theorem 2 of Eisenberg and Noe (2001) then establishes that the equilibrium
clearing vector P2 is unique. This unique equilibrium payment vector P2 can be obtained via
the Eisenberg-Noe fictitious default algorithm in at most N iterations, in the same way as P1 is
computed.

Online Appendix IV: Analytical Results for Stylized Networks

The NBAs led to changes in both interbank networks and bank balance sheets, e.g., New
York City (NYC) banks held more cash after the acts’ introduction. To evaluate the effect of
network changes in isolation, we provide analytical results for a pair of stylized networks. We
compare an N-bank chain network versus a two-tier pyramid, which underlines how the con-
centration of interconnections affects stability. We also extend the results to a stylized network
of seven banks, which resembles the emergence of the pyramiding structure after the NBAs. To
simplify, we normalize banks’ balance sheets such that the size of cash equals equity capital,
retail deposits are the same across all banks, and investment size is the same across all banks
except those that solely receive deposits, like the NYC banks. Such normalizations guarantee
that any variation in the robustness of the system is due to changes in the distribution of inter-
bank liabilities while abstracting away from other features of the network. To ease readability,
we move the proof to the end of this Appendix.

Balance-Sheet Normalization

Among the N banks, bank 1 solely receives deposits, which resembles an NYC bank. We
normalize banks’ balance sheets such that (1) the size of cash equals equity capital for all banks,
Ci = Ki,∀i; (2) the retail deposits are the same for all banks, Dii = d,∀i; and (3) the size of cash
and investment is the same across all banks except bank 1, i.e., Ci = C, Ii = I, ∀i ≥ 2. Denote
a bank’s total liability as Di =

∑
j D ji. The interbank deposits D are determined by the network

structure and the balance-sheet equality. Let us also fix the investment returns in an economy
without shocks, such that R2

i = 1,∀i. A positive cash holding then guarantees solvency from
loan investment in the absence of asset shocks. In line with the regulations brought about by the
NBAs, we assume that C < d so a country bank experiences cash shortage when facing retail
withdrawals; and C1 ≥ (1 − ξ)I1 so the NYC bank stays solvent after liquidation.

Illustrative of a “top-to-bottom crisis,” the NYC bank defaults after incurring losses in in-
vestment. Equivalently, the bank’s asset is less than its liability, i.e., C1+R2

1I1 < D1 = I1. Denote
∆R1 = 1 − C1+R2

1I1

I1
> 0 as the rate of investment loss for bank 1. Variations in ∆R1 represent the
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Figure A.1. An N-Bank Chain vs. a Two-Tier Pyramid. This figure shows two stylized
networks of N banks. Subfigure A.1a illustrates an N-bank chain network in which bank i
places a deposit Di,i−1 at bank i − 1. Subfigure A.1b illustrates a two-tier pyramid in which
banks i = 2, ...,N all place a deposit Di,1 at bank 1.

size of asset shock. We evaluate financial robustness by comparing the number of bank defaults
across the two stylized networks. Illustrative of a “bottom-to-top crisis,” a set of country banks
faces exogenous withdrawals by the retail depositor, W1

ii = 1, i ∈ ΩW . Variations in the size
of ΩW represent the size of withdrawal shocks. Since liquidation is the direct consequence of
withdrawals, we evaluate financial robustness by comparing the number of liquidations across
networks.

An N-Bank Chain vs. a Two-Tier Pyramid

In the N-bank chain network, bank N places a deposit DN,N−1 at bank N−1, who then places
a deposit DN−1,N−2 at bank N − 2, etc. Using balance-sheet equality, we derive the interbank
liabilities as

3d = I + DN,N−1 ⇒ DN,N−1 = d − I,

d + Di+1,i = C + I + Di,i−1 ⇒ Di,i−1 = (N − i + 1)(d − I),∀i = 2, ...,N − 1,

d + D21 = I1 ⇒ I1 = (N − 1)(d − I) + d.
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Figure A.2. Number of Defaults and Asset Shock Size ∆R1. This figure compares the number
of defaults in the four-bank chain and a two-tier pyramid as we vary the asset shock size ∆R1.
Compared to the four-bank chain, the two-tier pyramid is more robust when the shock size is
mild (as in interval AB) and is more fragile when the shock size is severe (as in interval BC).

In the two-tier pyramid, banks i = 2, ...,N all place a deposit Di,1 at bank 1 where interbank
deposits are highly concentrated. We have

3d = I + Di1 ⇒ Di1 = d − I,∀i = 2, ...,N,

d +

N∑
i=2

Di,1 = I1 ⇒ I1 = (N − 1)(d − I) + d.

Results show that comparisons of stability differ for the two types of crises.

Proposition 4 For a top-to-bottom crisis, the two-tier pyramid is more robust than the N-bank
chain when the negative return shock to bank 1 is mild. For a bottom-to-top crisis, the two-tier
pyramid is always more robust than the N-bank chain as long as bank 1 has enough cash assets
to remain solvent; the comparison of stability is insensitive to the size of withdrawal shocks at
country banks.

Examples

We illustrate the above results in an example of four banks. We start by analyzing the top-
to-bottom crises. In a four-bank chain, the conditions for the simultaneous default of two, three,
and four banks are ∆R1 >

C
D21

= C
3(d−I) , ∆R1 >

C
D21

(
1 + D2

D32

)
, and ∆R1 >

C
D21

(
1 + D2

D32
+ D2

D32

D3
D43

)
,

respectively. In a two-tier pyramid, banks i = 2, 3, 4 are direct respondents of bank 1—the
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condition for simultaneous default of all banks is ∆R1 > C
D21

= C
d−I . Figure A.2 illustrates

the number of defaults in the two networks when we vary the size of ∆R1. Comparing across
networks, under a mild asset shock when ∆R1 ∈

(
C

D21
, C

d−I

]
(corresponding to interval AB in

Figure A.2), the two-tier pyramid is more robust because default is limited to only the shocked
bank 1, whereas the four-bank chain has multiple defaults caused by contagion. However, under
a severe asset shock ∆R1 ∈

(
C

d−I ,
C

D21

(
1 + D2

D32
+ D2

D32

D3
D43

)]
(corresponding to interval BC in Figure

A.2), the two-tier pyramid in which all four banks default is more fragile. In comparison, the
four-bank chain has fewer defaults.

The comparison is different when it comes to a bottom-to-top crisis. We find that the two-
tier pyramid is more robust to withdrawal shocks. In the four-bank chain network, withdrawal
shock at the bottom of the chain is contagious along the chain, affecting all the banks. Facing
an exogenous withdrawal shock, bank 4 suffers from cash shortage and withdraws from bank
3 (following condition (7) in the paper), who then withdraws from bank 2, etc. Thus, bank 1
receives a total withdrawal request of D1 = I1 = 3(d − I) + d. Since C1 ≥ (1 − ξ)I1, bank 1 is
solvent. When the country banks do not have significant cash to meet depositors’ run (C < I),
all country banks would suffer from liquidation. This result holds no matter whether one or
two country banks are hit with the withdrawal shock simultaneously. The two-tier pyramid is
different because the depositors’ run is contained to only the shocked country banks, as long
as bank 1 stays solvent. The two-tier structure effectively avoids the propagation of withdrawal
shocks along the chain and is thus more robust.

The above insights carry through to a stylized network with seven banks. As shown in Figure
A.3, this example resembles the structural changes brought about by the NBAs. The pre-NBAs
network is summarized in Figure A.3a: both the NYC bank (bank 1) and the Philadelphia (PHL)
bank (bank 2) are major correspondent banks. A Pittsburgh (PIT) bank places deposits at PHL.
The PIT bank (bank 3) and other country banks (4 and 5) serve as local correspondents, taking
deposits from country banks (6 and 7). The NBAs led to a three-tier reserve pyramid which had
fewer numbers of correspondents. As in Figure A.3b, all country banks (i = 4, 5, 6, 7) place
deposits at reserve city banks in PHL and PIT (i = 2, 3), which then place deposits at the NYC
bank (i = 1) at the top.

The stylized network with seven banks is a stacked version of the two-tier model. As such,
the results in Proposition 4 follow through. For a top-to-bottom crisis, the size of asset shock
matters. Under mild asset shocks, the post-NBAs three-tier pyramid is more robust than the
pre-NBAs network because the asset shock is less likely to spread to respondent banks 2 and 3.
For a bottom-to-top crisis, the post-NBAs three-tier pyramid is always more robust because the
chains are shorter so the country banks that are not directly shocked can avoid liquidations.
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Figure A.3. A Stylized Network with Seven Banks. This figure shows two stylized networks
that resemble the structural changes brought by the NBAs. Subfigure A.3a illustrates the pre-
NBAs network. Subfigure A.3b illustrates the post-NBAs network.

Importance of Top-to-Bottom vs. Bottom-to-Top Crises

We have compared the stability of different stylized networks under crises that originate
from the top and the bottom of the pyramid. The analysis also provides insights into what type
of crises are more relevant to a concentrated network. Let us focus on the two-tier pyramid.
For a top-to-bottom crisis, as long as the return shock to bank 1 is large enough, insolvency
spreads to the entire network, so all banks default simultaneously. In contrast, for a bottom-
to-top crisis, as long as the NYC bank (bank 1 in the stylized model) has enough cash and
stays solvent against withdrawals from country banks, liquidation will not occur at banks that
do not directly face withdrawal shocks. Furthermore, the two-tier pyramid is more robust than
the chain network regardless of the size of withdrawal shocks ΩW to country banks. This result
implies that a severe bottom-to-top crisis becomes less probable in a pyramid structure. These
theoretical predictions are in line with evidence from the National Banking era showing that the
banking crises mainly originated from financial centers as described, e.g., in Wicker (2006).

Proof of Proposition 4

First, we analyze the top-to-bottom crisis. We compare the number of defaults across the two
networks when varying the shock sizes for ∆R1. Denote Qi =

X j,i

D j,i
the fraction of payment over

the nominal liability by a correspondent bank i. Denote ∆R1[#n] and ˆ∆R1[#n] as the thresholds
of shock sizes to bank 1 that cause the simultaneous defaults of n banks in the N-bank chain
network, and the two-tier network, respectively.

We start from the N-bank chain network. Bank 1 defaults as long as ∆R1 > 0, and so
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Q1 = 1 − ∆R1 < 1. Banks i = 1, 2 default if C + I + Q1D21 < d + D32; this gives

∆R1 > ∆R1[#2] =
C

D21
=

C
(N − 1)(d − I)

. (A.4)

Similarly, bank i = 1, 2, 3 default if ∆R1 > ∆R1[#3] = C
D2,1

[
1 + D2

D32

]
. Among the defaulting

banks along the chain network, the payment fraction {Qi} series obeys a recursive relationship
Qi = I+C

Di
+

Di,i−1Qi−1

Di
. Plugging in the balance-sheet relationship Di = I + Di,i−1, we arrive at the

following recursive form,

(1 − Qi) =
Di,i−1

Di
(1 − Qi−1) −

C
Di
. (A.5)

We conclude that bank i + 1 defaults if 1 − Qi >
C

Di+1,i
. Using (A.5), we obtain the threshold for

bank i + 1 to default,

∆R1[#i + 1] =
C

D2,1

1 +

i∑
k=2

k∏
j=2

D j

D j+1, j

 . (A.6)

Hence, the threshold for the simultaneous default of all N banks satisfies

∆R1[#N] =
C

D2,1

1 +

N−1∑
k=2

k∏
j=2

D j

D j+1, j

 > C
D2,1

1 +

N−1∑
k=2

k∏
j=2

1

 =
C(N − 1)

D2,1
=

C
d − I

. (A.7)

Next we turn to the two-tier pyramid. Bank 1 defaults as long as ∆R1 > 0. In the second
tier, banks i = 2, ...,N simultaneously default if

∆R1 > ˆ∆R1[#N] =
C

Di,1
=

C
d − I

. (A.8)

From (A.4) and (A.8), ˆ∆R1[#N] > ∆R1[#2], so the shock size required to generate contagion
in the N-chain is milder than that in the two-tier pyramid. From (A.7) and (A.8), ∆R1[#N] >

ˆ∆R1[#N], so the shock size required to trigger N simultaneous defaults is more severe in the N-
chain network. We have the following conclusions by comparing the number of defaults across
networks. Under mild shocks ∆R1 ∈

(
∆R1[#2], ˆ∆R1[#N]

]
the N-chain network has multiple

defaults whereas the two-tier pyramid is more robust incurring only one default; under a severe
asset shock ∆R1 ∈

(
ˆ∆R1[#N],∆R1[#N]

]
, the N-chain incurs no more than N−1 defaults, whereas

the two-tier pyramid is more fragile, suffering from N defaults.
Next, we turn to the bottom-to-top crises. We compare the number of liquidations across

the two networks when varying the size of exogenous withdrawal set ΩW . Let the size of ΩW be
k, such that the exogenous withdrawals satisfy W1

ii = 1, i = N − k + 1, ...,N − 1,N. Recall that
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Table A.5. Comparing the Number of Liquidations

N-Bank Chain Two-Tier Pyramid

C1 ≥ I1 C1 ∈
[
(1 − ξ)I1, I1) C1 ≥ k(d − I) + d C1 ∈

[
(1 − ξ)I1, k(d − I) + d)

C ≥ I 0 1 0 1
C < I N − 1 N k k + 1

C1 is the cash level at bank 1 and C the cash level at all other banks.
We start with the N-bank chain network. Facing the retail depositor’s withdrawal, bank N

does not have enough cash to meet the withdrawal request (recall that C < d) and withdraws
from bank N−1 under condition (10) in the paper. Bank N−1 then withdraws from bank N−2,
etc. Even if bank N − k does not receive an exogenous withdrawal shock, the retail depositor
still withdraws because she follows bank depositors according to condition (7) in the paper. The
same holds for all other banks. Hence, bank 1 receives a withdrawal of D1 = (N − 1)(d − I) + d

in total. Two cases are relevant depending on the level of C1.
If C1 ≥ I1 = (N−1)(d− I)+d, bank 1 has enough cash to cover the withdrawal requests so it

does not liquidate. We further have that, if C ≥ I, all payments are paid in full so X = D and no
banks liquidate, i.e.,

∑
i Il

i = 0.4 If C < I, then even if a bank redeems all its interbank deposits
in full, it still does not have enough cash to honor the withdrawal request; hence, liquidation
occurs at all banks other than bank 1, i.e.,

∑
i Il

i = N − 1.
If C1 ∈

[
(1 − ξ)I1, I1), bank 1 does not have enough cash to cover the withdrawal requests

unless it liquidates, so Il
1 = 1 and Id1

1 = 0. If C ≥ I, then all payments are paid in full so X = D

and none of the other banks liquidate, i.e.,
∑

i Il
i = 1. If C < I, then even if a bank redeems all

its interbank deposits in full, it still does not have enough cash to honor the withdrawal request;
hence, liquidation occurs at all banks, i.e.,

∑
i Il

i = N.
On balance, the number of liquidations

∑
i Il

i depends on C1, the cash level at bank 1, and
C, the cash level at all other banks; see a summary in Table A.5. Notably, the number of
liquidations does not depend on the shock size k.

We now move on to the two-tier pyramid case. Banks i ∈ ΩW = {N − k + 1, ...,N −1,N} face
withdrawal shocks and they have to redeem deposits Di1 from bank 1. Together with the retail
depositor’s withdrawal based on condition (7) in the main paper, bank 1 receives a withdrawal
of k(I − d) + d in total.

If C1 ≥ k(d − I) + d, bank 1 has enough cash to cover the withdrawal requests, so it does

4To see this, notice that X2,1 = D2,1. Since C ≥ I, we have C + X2,1 ≥ d + D3,2, i.e., bank 2 does not liquidate,
and so on. More generally, as long as bank 1 does not default and pays deposits in full, we have that all banks i ≥ 2
avoid liquidation if and only if C + Di,1 ≥ d + Di+1,i, i.e., C ≥ I.
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not liquidate. Accordingly, the other respondents do not withdraw. If C ≥ I, then as is the
case above no banks liquidate,

∑
i Il

i = 0. If C < I, then even if a bank redeems all its interbank
deposits in full, liquidation still occurs at all the banks suffering from the exogenous withdrawal
shock, i.e.,

∑
i Il

i = k.
If C1 ∈

[
(1 − ξ)I1, k(d − I) + d), bank 1 does not have enough cash to cover the withdrawal

requests unless it liquidates, so Il
1 = 1 and Id1

1 = 0. If C ≥ I, then all payments are paid in full
and none of the other banks liquidate, i.e.,

∑
i Il

i = 1. If C < I, then even if a bank redeems all its
interbank deposits in full, liquidation still occurs at all banks suffering from withdrawals, i.e.,∑

i Il
i = k + 1. Under the condition that (1 − ξ)I1 > k(d − I) + d, then this second case does not

exist, so bank 1 never liquidates. The number of liquidations
∑

i Il
i therefore depends on banks’

cash holdings C1 and C; see a summary in Table A.5.
We can compare the vulnerability to bottom-to-top crises across networks. As long as not

all country banks face the initial exogenous withdrawal shocks (k < N − 1, a reasonable pre-
sumption), the two-tier pyramid is always more robust, a result insensitive to the withdrawal
shock size k. The mechanism is as follows. In an N-bank chain network, withdrawal shock at
the bottom is contagious along the chain. Banks that are subject to withdrawal suffer from a
cash shortage, and thus would redeem its interbank deposits, causing further panic withdrawals
at all other banks. In contrast, in a two-tier pyramid, as long as bank 1 has enough cash and does
not default, the panic withdrawals are contained within the shocked country banks, rather than
spreading to the other country banks. Hence, the two-tier pyramid is more robust to withdrawal
shocks originating from country banks.
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